References
1. Beaudette, C.G., Excess Heat. Why Cold Fusion Research Prevailed. 2000,
Concord, NH: Oak Grove Press (Infinite Energy, Distributor).
2.
Fleischmann, M., S. Pons, and M. Hawkins, Electrochemically induced nuclear
fusion of deuterium. J. Electroanal. Chem., 1989. 261: p. 301 and
errata in Vol. 263.
3. Bush, R.T. and R.D. Eagleton.
Calorimetric Studies for Several Light Water Electrolytic Cells With Nickel
Fibrex Cathodes and Electrolytes with Alkali Salts of Potassium, Rubidium, and
Cesium. in Fourth International Conference on Cold Fusion. 1993.
Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto,
CA 94304.
4. Mills, R.L. and P. Kneizys, Excess heat
production by the electrolysis of an aqueous potassium carbonate electrolyte and
the implications for cold fusion. Fusion Technol., 1991. 20: p.
65.
5. Storms, E. Excess
Power Production from Platinum Cathodes Using the Pons-Fleischmann
Effect. in 8th International Conference on Cold Fusion. 2000.
Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
6. Warner, J., J. Dash, and S. Frantz. Electrolysis of D2O With Titanium Cathodes: Enhancment of Excess
Heat and Further Evidence of Possible Transmutation. in The Ninth
International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua
University: unpublished.
7. Fleischmann, M. More About
Positive Feedback; More About Boiling. in 5th International Conference on
Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex,
France.
8. Lonchampt, G., L. Bonnetain, and P. Hieter. Reproduction of Fleischmann and Pons Experiments. in
Sixth International Conference on Cold Fusion, Progress in New Hydrogen
Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial
Technology Development Organization, Tokyo Institute of Technology, Tokyo,
Japan.
9. Mengoli, G., et al., Calorimetry close to the
boiling temperature of the D2O/Pd electrolytic system. J. Electroanal.
Chem., 1998. 444: p. 155.
10. Bockris, J., et al. Triggering of Heat and Sub-Surface Changes in Pd-D Systems.
in Fourth International Conference on Cold Fusion. 1994. Lahaina, Maui:
Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
11. Castellano, et al. Nuclear Transmutation in Deutered Pd Films Irradiated by an UV
Laser. in 8th International Conference on Cold Fusion. 2000.
Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
12. Di Giulio, M., et al., Analysis of Nuclear Transmutations
Observed in D- and H-Loaded Films. J. Hydrogen Eng., 2002. 27: p.
527.
13. Nassisi, V., Transmutation of elements in
saturated palladium hydrides by an XeCl excimer laser. Fusion Technol.,
1998. 33: p. 468.
14. Mizuno, T., et al., Production of Heat During Plasma Electrolysis. Jpn. J. Appl.
Phys. A, 2000. 39: p. 6055.
15. Ohmori, T., Recent
development in solid state nuclear transmutation occurring by the
electrolysis. Curr. Topics Electrochem., 2000. 7: p. 101.
16. Sundaresan, R. and J. Bockris, Anomalous Reactions During
Arcing Between Carbon Rods in Water. Fusion Technol., 1994. 26: p.
261.
17. Miley, G.H., et al. Advances in Thin-Film
Electrode Experiments. in 8th International Conference on Cold
Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna,
Italy.
18. Storms, E., Ways
to Initiate a Nuclear Reaction in Solid Environments. Infinite Energy,
2002. 8(45): p. 45.
19. Miles, M., et al. Thermal
Behavior of Polarized Pd/D Electrodes Prepared by Co-deposition. in
The Ninth International Conference on Cold Fusion. 2002. Beijing, China:
Tsinghua University: unpublished.
20. Szpak, S., P.A.
Mosier-Boss, and J.J. Smith, On the
behavior of Pd deposited in the presence of evolving deuterium. J.
Electroanal. Chem., 1991. 302: p. 255.
21. Arata, Y.
and Y.C. Zhang. Definite Difference amoung [DS-D2O], [DS-H2O] and [Bulk-D2O]
Cells in the Deuterization and Deuterium-reaction. in 8th International
Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical
Society, Bologna, Italy.
22. Case, L.C. Catalytic Fusion of Deuterium into Helium-4. in
The Seventh International Conference on Cold Fusion. 1998. Vancouver,
Canada: ENECO, Inc., Salt Lake City, UT.
23. Iwamura, Y., M.
Sakano, and T. Itoh, Elemental Analysis of Pd Complexes: Effects of D2 Gas
Permeation. Jpn. J. Appl. Phys. A, 2002. 41: p. 4642.
24. Claytor, T.N., et al. Tritium Production from Palladium Alloys. in The Seventh
International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO,
Inc., Salt Lake City, UT.
25. Dufour, J., et al.,
Interaction of palladium/hydrogen and palladium/deuterium to measure the
excess energy per atom for each isotope. Fusion Technol., 1997. 31:
p. 198.
26. Bae, Y.K., D.D. Lorents, and S.E. Young,
Experimental confirmation of cluster-impact fusion. Phys. Rev. A: At.
Mol. Opt. Phys., 1991. 44: p. R4091.
27. Cecil, F.E.
and G.M. Hale. Measurement of D-D and D-Li6 Nuclear Reactions at Very Low
Energies. in Second Annual Conference on Cold Fusion, "The Science of
Cold Fusion". 1991. Como, Italy: Societa Italiana di Fisica, Bologna,
Italy.
28. Karabut, A. B. Analysis of Experimental Results on Excess Heat Power Production,
Impurity Nuclides Yield in the Cathode Material and Penetrating Radiation in
Experiments with High-Current Glow Discharge. in 8th International
Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical
Society, Bologna, Italy.
29. Kasagi, J., et al. Observation
of High Energy Protons Emitted in the TiDx+D Reaction at Ed=150 keV and
Anomalous Concentration of 3He. in Third International Conference on Cold
Fusion, "Frontiers of Cold Fusion". 1992. Nagoya Japan: Universal Academy
Press, Inc., Tokyo, Japan.
30. Kosyakhkov, A.A., et al.,
Neutron yield in the deuterium ion implantation into titanium. Fiz.
Tverd. Tela, 1990. 32: p. 3672 (in Russian).
31.
Savvatimova, I. Reproducibility of Experiments in Glow Discharge and Processes
Accompanying Deuterium ions Bombardment. in 8th International
Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical
Society, Bologna, Italy.
32. Takahashi, A., et al.,
Detection of three-body deuteron fusion in titanium deuteride under the
stimulation by a deuteron beam. Phys. Lett. A, 1999. 255: p.
89.
33. Wang, T., et al., Investigating the Unknown Nuclear
Reaction in a Low-Energy (E<300 keV) p + T2Hx Experiment. Fusion
Technol., 2000. 37: p. 146.
34. Yuki, H., et al.,
Measurement of the D(d,p) reaction in Ti for 2.5 < Ed < 6.5 keV and
electron screening in metal. J. Phys. Soc. Japan, 1997. 66: p.
73.
35. Beuhler, R.J., et al., Deuteron-Deuteron Fusion by
Impact of Heavy-Water Clusters on Deuterated Surfaces. J. Phys. Chem., 1991.
94: p. 7665.
36. Mizuno, T., et al., Anomalous heat
evolution from a solid-state electrolyte under alternating current in
high-temperature D2 gas. Fusion Technol., 1996. 29: p. 385.
37. Oriani, R.A., An
investigation of anomalous thermal power generation from a proton-conducting
oxide. Fusion Technol., 1996. 30: p. 281.
38.
Botta, E., et al. Search
for 4He Production from Pd/D2 Systems in Gas Phase. in 5th International
Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia
Antipolis Cedex, France.
39. Iazzi, F., et al. Correlated Measurements of D2 Loading and 4He Production in Pd
Lattice. in The Seventh International Conference on Cold Fusion.
1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
40.
Celani, F., et al. The
Effect of Gamma-Beta Phase on H(D)/Pd Overloading. in ICCF7, Seventh
International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO,
Inc., Salt Lake City, UT.
41. Manduchi, C., et al.,
Electric-field effects on the neutron emission from Pd deuteride samples.
Nuovo Cimento Soc. Ital. Fis. A, 1995. 108: p. 1187.
42. Rajan, K.G., et al., Electromigration approach to verify cold
fusion effects. Fusion Technol., 1991. 20: p. 100.
43. Jorne, J., Ultrasonic irradiation of deuterium-loaded
palladium particles suspended in heavy water. Fusion Technol., 1996.
29: p. 83.
44. Stringham, R., et al. Predictable and
Reproducible Heat. in The Seventh International Conference on Cold
Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
45. Lipson, A.G., et al., Initiation of nuclear fusion by
cavitation action on deuterium-containing media. Zh. Tekh. Fiz., 1992.
62(12): p. 121 (in Russian).
46. Griggs, J.L. A
Brief Introduction to the Hydrosonic Pump and the Associated "Excess Energy"
Phenomenon. in Fourth International Conference on Cold Fusion. 1993.
Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto,
CA 94304.
47. Karpov, S.Y., et al., On the possibility of a
mechanism of cold nuclear fusion. Pis'ma Zh. Tekh. Fiz., 1990. 16(5):
p. 91 (in Russian).
48. Arzhannikov, A.V. and G.Y.
Kezerashvili, First observation of neutron emission from chemical
reactions. Phys. Lett., 1991. A156: p. 514.
49.
Beltyukov, I.L., et al., Laser-induced cold nuclear fusion in Ti-H2-D2-T2
compositions. Fusion Technol., 1991. 20: p. 234.
50. De Ninno, A., et al., Emission of neutrons as a consequence
of titanium-deuterium interaction. Nuovo Cimento Soc. Ital. Fis. A, 1989.
101: p. 841.
51. Menlove, H.O., et al., The
measurement of neutron emission from Ti plus D2 gas. J. Fusion Energy, 1990.
9: p. 215.
52. Vysotskii, V., et al. Experimental
Observation and Study of Controlled Transmutation of Intermediate Mass Isotopes
in Growing Biological Cultures. in 8th International Conference on Cold
Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna,
Italy.
53. Komaki, H. Observations on the Biological Cold
Fusion or the Biological Transformation of Elements. in Third
International Conference on Cold Fusion, "Frontiers of Cold Fusion". 1992.
Nagoya Japan: Universal Academy Press, Inc., Tokyo, Japan.
54.
Kervran, C.L., Biological Transmutation. 1980: Beekman Publishers,
Inc.
55. Campari, E.G., et al. Ni-H Systems. in 8th
International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy:
Italian Physical Society, Bologna, Italy.
56.
Sankaranarayanan, T.K., et al. Evidence for Tritium Generation in Self-Heated Nickel Wires
Subjected to Hydrogen Gas Absorption/Desorption Cycles. in 5th
International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA
Europe, Sophia Antipolis Cedex, France.
57. Bush, R.T. and
R.D. Eagleton, Evidence for Electrolytically Induced Transmutation and
Radioactivity Correlated with Excess Heat in Electrolytic Cells with Light Water
Rubidium Salt Electrolytes. Trans. Fusion Technol., 1994. 26(4T): p.
334.
58. Lonchampt, G., et al. Excess Heat Measurement with Patterson Type Cells. in The
Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada:
ENECO, Inc., Salt Lake City, UT.
59. Miley, G.H. On the
Reaction Product and Heat Correlation for LENRs. in 8th International
Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical
Society, Bologna, Italy.
60. Niedra, J.M. and I.T. Myers,
Replication of the apparent excess heat effect in light water-potassium
carbonate-nickel-electrolytic cell. Infinite Energy, 1996. 2(7): p.
62.
61. Noninski, V.C., Excess heat during the electrolysis
of a light water solution of K2CO3 with a nickel cathode. Fusion Technol.,
1992. 21: p. 163.
62. Notoya, R. Nuclear Products of
Cold Fusion Caused by Electrolysis in Alkali Metallic Ions Solutions. in
5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco:
IMRA Europe, Sophia Antipolis Cedex, France.
63. Ohmori, T.
and M. Enyo, Excess heat evolution during electrolysis of H2O with nickel,
gold, silver, and tin cathodes. Fusion Technol., 1993. 24: p.
293.
64. Rothwell, J., CETI's 1 kilowatt cold fusion device
denonstrated. Infinite Energy, 1996. 1(5&6): p. 18.
65. Swartz, M.R. Optimal Operating Point Characteristics of
Nickel Light Water Experiments. in The Seventh International Conference
on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City,
UT.
66. Reifenschweiler, O., Some experiments on the decrease of tritium radioactivity.
Fusion Technol., 1996. 30: p. 261.
67. Storms, E.,
Description of a dual calorimeter. Infinite Energy, 2000.
6(34): p. 22.
68. Miles, M. and K.B. Johnson.
Improved, Open Cell, Heat Conduction, Isoperibolic Calorimetry. in
Sixth International Conference on Cold Fusion, Progress in New Hydrogen
Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial
Technology Development Organization, Tokyo Institute of Technology, Tokyo,
Japan.
69. Belzner, A., et al., Two fast mixed-conductor
systems: deuterium and hydrogen in palladium - thermal measurements and
experimental considerations. J. Fusion Energy, 1990. 9(2): p.
219.
70. Hansen, W.N. and M.E. Melich, Pd/D
Calorimetry- The Key to the F/P Effect and a Challenge to Science.
Trans. Fusion Technol., 1994. 26(4T): p. 355.
71.
Storms, E., Cold Fusion: An Objective Assessment. 2001.
72. Storms, E., The
Nature of the Nuclear-Active-Environment Required for Low Energy Nuclear
Reactions. Infinite Energy, 2002. 8(45): p. 32.
73. Oya, Y., et al. Material
Conditions to Replicate the Generation of Excess Energy and the Emission of
Excess Neutrons. in The Seventh International Conference on Cold
Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
74. Storms, E., My
life with cold fusion as a reluctant mistress. Infinite Energy, 1999.
4(24): p. 42.
75. Miles, M., K.B. Johnson, and M.A.
Imam. Heat and Helium Measurements Using Palladium and Palladium Alloys in
Heavy Water. in Sixth International Conference on Cold Fusion, Progress
in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and
Industrial Technology Development Organization, Tokyo Institute of Technology,
Tokyo, Japan.
76. Storms, E., A
critical evaluation of the Pons-Fleischmann effect: Part 1. Infinite
Energy, 2000. 6(31): p. 10.
77. Miles, M., M.
Fleischmann, and M.A. Imam, Calorimetric Analysis of a Heavy Water
Electrolysis Experiment Using a Pd-B Alloy Cathode. 2001: Washington. p.
154.
78. Arata, Y. and Y.C. Zhang, A new
energy caused by "Spillover-deuterium". Proc. Jpn. Acad., Ser. B, 1994.
70 ser. B: p. 106.
79. McKubre, M.C.H., et al. The
Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd
System: Evidence for 4He and 3He Production. in 8th International
Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical
Society, Bologna, Italy.
80. Clarke, B.W., et al., Search
for 3He and 4He in Arata-Style Palladium Cathodes II: Evidence for Tritium
Production. Fusion Sci. & Technol., 2001. 40: p. 152.
81. Iwamura, Y., et al. Detection of Anomalous Elements, X-ray and Excess Heat Induced by
Continous Diffusion of Deuterium Through Multi-layer Cathode
(Pd/CaO/Pd). in The Seventh International Conference on Cold
Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
82. Wipf, H. and V. Erckman, On Permeation Techniques for
Electrotransport Studies on Metal-Hydrogen Systems. Scr. Metall., 1976.
10: p. 813.
83. Tamaki, M. and K. Tasaka. Field
Formation of the Condensed Matter Fusion by Electro-Transport of Deuterium in
Palladium. in Third International Conference on Cold Fusion, "Frontiers
of Cold Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo,
Japan.
84. Wisniewski, R. and A.J. Rostocki, Hall Effect in
the Pd-H System. Phys. Rev. B: Mater. Phys., 1971. 3(2): p.
251.
85. Tsuchida, T., Role of hydrogen atoms in
palladium. J. Phys. Soc. Japan, 1963. 18: p. 1016.
86. Bartolomeo, C., et al. Alfred Coehn and After: The Alpha,
Beta and Gamma of the Palladium-Hydrogen System. in Fourth International
Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research
Institute 3412 Hillview Ave., Palo Alto, CA 94304.
87. Del
Giudice, E., et al. The Fleischmann-Pons Effect in a Novel Electrolytic
Configuration. in 8th International Conference on Cold Fusion. 2000.
Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
88. Celani, F., et al., Deuterium overloading of palladium wires by means of high power
microsecond pulsed electrolysis and electromigration: suggestions of a "phase
transition" and related excess heat. Phys. Lett. A, 1996. 214: p.
1.
89. McKubre, M.C.H. Closing Comments Summerizing the Status and Progress of Experimental
Studies. in The Ninth International Conference on Cold Fusion.
2002. Beijing, China: Tsinghua University: unpublished.
90.
Stringham, R. and R. George, Cavitation induced micro-fusion solid state
production of heat, 3He, and 4He. 1995.
91. Lipson, A.G.,
et al., Observation of neutrons from cavitation action on substances
containing deuterium. Pis'ma Zh. Teor. Fiz., 1990. 16(9): p. 89 (in
Russian).
92. Taleyarkhan, R.P., et al., Evidence for
Nuclear Emissions During Acoustic Cavation. Science, 2002. 295: p.
1868.
93. Mallove, E., Excess heat in cavitation devices:
World-wide testing reports. Infinite Energy, 1995. 1(3): p. 16.
94. Kim, Y.E., Cross section for cold deuterium-deuterium
fusion. Fusion Technol., 1990. 17: p. 507.
95.
Kasagi, J., et al. Low Energy Nuclear Fusion Reactions in Solids. in
8th International Conference on Cold Fusion. 2000. Lerici (La Spezia),
Italy: Italian Physical Society, Bologna, Italy.
96.
Cedzynska, K. and F.G. Will, Closed-system analysis of tritium in
palladium. Fusion Technol., 1992. 22: p. 156.
97.
Taubes, G., Cold Fusion Conundrum at Texas A & M. Science, 1990.
248: p. 1299.
98. Anderson, J., et al., Letters and
Response about Cold Fusion at Texas A&M. Science, 1990. 249: p.
463-465.
99. Preparata, G., A new look at solid-state
fractures, particle emission and 'cold' nuclear fusion. Nuovo Cimento Soc.
Ital. Fis. A, 1991. 104: p. 1259.
100. Yasui, K.,
Fractofusion mechanism. Fusion Technol., 1992. 22: p. 400.
101. Takeda, T. and T. Takizuka, Fractofusion mechanism. J.
Phys. Soc. Japan, 1989. 58(9): p. 3073.
102. Camp,
W.J., Helium Detrapping and Release from Metal Tritides. J. Vac. Sci.
Technol. A, 1977. 14: p. 514.
103. Storms, E., A
Review of the Cold Fusion Effect. J. Sci. Expl., 1996. 10(2): p.
185.
104. Karabut, A.B., Y.R. Kucherov, and I.B. Savvatimova,
Nuclear product ratio for glow discharge in deuterium. Phys. Lett. A,
1992. 170: p. 265.
105. Miles, M., B.F. Bush, and J.J.
Lagowski, Anomalous effects involving excess power, radiation, and helium
production during D2O electrolysis using palladium cathodes. Fusion
Technol., 1994. 25: p. 478.
106. Gozzi, D., et al.,
X-ray, heat excess and 4He in the D/Pd system. J.
Electroanal. Chem., 1998. 452: p. 251.
107. Bush, B.F.
and J.J. Lagowski. Methods
of Generating Excess Heat with the Pons and Fleischmann Effect: Rigorous and
Cost Effective Calorimetry, Nuclear Products Analysis of the Cathode and Helium
Analysis. in The Seventh International Conference on Cold Fusion.
1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
108. Isobe, Y., et al. Search for Coherent
Deuteron Fusion by Beam and Electrolysis Experiments. in 8th
International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy:
Italian Physical Society, Bologna, Italy.
109. Arata, Y. and
Y.C. Zhang, Helium (4He, 3He) within deuterated Pd-black. Proc. Jpn.
Acad., Ser. B, 1997. 73: p. 1.
110. Jordan, K.C., B.C.
Blanke, and W.A. Dudley, Half-Life of Tritium. J. Inorg. Nucl. Chem.,
1967. 29: p. 2129.
111. Corrigan, D.A. and E.W.
Schneider, Tritium separation effects during heavy water electrolysis:
implications for reported observations of cold fusion. J. Electroanal.
Chem., 1990. 281: p. 305.
112. Boucher, G.R., F.E.
Collins, and R.L. Matlock, Separation factors for hydrogen isotopes on
palladium. Fusion Technol., 1993. 24: p. 200.
113.
Will, F.G., K. Cedzynska, and D.C. Linton, Reproducible tritium generation in
electrochemical cells employing palladium cathodes with high deuterium
loading. J. Electroanal. Chem., 1993. 360: p. 161.
114. Storms, E. and C. Talcott-Storms, The effect of hydriding
on the physical structure of palladium and on the release of contained
tritium. Fusion Technol., 1991. 20: p. 246.
115.
Matsumoto, O., et al. Tritium Production Rate. in Anomalous Nuclear
Effects in Deuterium/Solid Systems, "AIP Conference Proceedings 228". 1990.
Brigham Young Univ., Provo, UT: American Institute of Physics, New York.
116. Storms, E. and C.L. Talcott, Electrolytic tritium
production. Fusion Technol., 1990. 17: p. 680.
117. Chien, C.C., et al., On an electrode producing massive
quantities of tritium and helium. J. Electroanal. Chem., 1992. 338:
p. 189.
118. Sankaranarayanan, M., et al. Investigation of
Low Level Tritium Generation in Ni-H2O Electrolytic Cells. in Fourth
International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power
Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
119. Itoh, T., et al. Observation of Nuclear Products Under
Vacuum Conditions from Deuterated Palladium with High Loading Ratio. in
5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco:
IMRA Europe, Sophia Antipolis Cedex, France.
120. Akimoto,
T., et al. Temperature dependency on counting efficiency of NE213 liquid
scintillator for low level neutron measurement. in Sixth International
Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya,
Hokkaido, Japan: New Energy and Industrial Technology Development Organization,
Tokyo Institute of Technology, Tokyo, Japan.
121. Bruschi,
M., U. Marconi, and A. Zoccoli. The neutron spectrometer of the cold fusion
experiment under the Gran Sasso Laboratory. in Hadronic Phys., Winter
Course 8th 1993. 1994: World Sci., Singapore.
122.
Menlove, H.O. and M.C. Miller, Neutron-burst detectors for cold-fusion
experiments. Nucl. Instrum. Methods Phys. Res. A, 1990. 299: p.
10.
123. Aoyama, T., et al., Highly reliable low-level
neutron detection using 3He proportional counters. Radioisot., 1991.
40: p. 188.
124. Cisbani, E., et al., Neutron
Detector for CF Experiments. Nucl. Instrum. Methods Phys. Res. A, 2001.
459: p. 247.
125. Storms, E., Review of
experimental observations about the cold fusion effect. Fusion Technol.,
1991. 20: p. 433.
126. Takahashi, A., et al.,
Multibody fusion model to explain experimental results. Fusion Technol.,
1995. 27: p. 71.
127. Takahashi, A. Nuclear
Products by D2O/Pd Electrolysis and Multibody Fusion. in Int. Symp.
Nonlinear Phenom. in Electromagnetic Fields. 1992. ISEM-Nagoya,.
128. De Ninno, A., et al., Evidence of emission of neutrons from
a titanium-deuterium system". Europhys. Lett., 1989. 9: p. 221.
129. Menlove, H.O., et al. Reproducible Neutron Emission
Measurements From Ti Metal in Pressurized D2 Gas. in Anomalous Nuclear
Effects in Deuterium/Solid Systems, "AIP Conference Proceedings 228". 1990.
Brigham Young Univ., Provo, UT: American Institute of Physics, New York.
130. Kaushik, T.C., et al., Preliminary report on direct
measurement of tritium in liquid nitrogen treated TiDx chips. Indian J.
Technol., 1990. 28: p. 667.
131. Jones, S.E., et al.,
Observation of cold nuclear fusion in condensed matter. Nature (London),
1989. 338: p. 737.
132. Bush, R.T. and R.D. Eagleton.
Experimental Studies Supporting the Transmission Resonance Model for Cold
Fusion in Light Water: II. Correlation of X-Ray Emission With Excess Power.
in Third International Conference on Cold Fusion, "Frontiers of Cold
Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo,
Japan.
133. Cellucci, F., et al. X-Ray, Heat Excess and
4He in the Electrochemical Confinement of Deuterium in Palladium. in
Sixth International Conference on Cold Fusion, Progress in New Hydrogen
Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial
Technology Development Organization, Tokyo Institute of Technology, Tokyo,
Japan.
134. Chen, S., et al., X-ray diagnostics in gas
discharge. Trends Nucl. Phys., 1995. 12((3)): p. 58 (in
Chinese).
135. Isagawa, S., Y. Kanda, and T. Suzuki,
Present status of cold fusion experiment at KEK". Int. J. Soc. Mat. Eng.
Resources, 1998. 65(1): p. 60.
136. Iwamura, Y., et
al. Characteristic X-ray and Neutron Emissions from Electrochemically
Deuterated Palladium. in 5th International Conference on Cold Fusion.
1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
137. Iyengar, P.K., et al., Bhabha Atomic Research Centre
studies on cold fusion. Fusion Technol., 1990. 18: p. 32.
138. McKubre, M.C.H., et al. Calorimetry and Electrochemistry in
the D/Pd System. in The First Annual Conference on Cold Fusion. 1990.
University of Utah Research Park, Salt Lake City, Utah: National Cold Fusion
Institute.
139. Szpak, S., P.A. Mosier-Boss, and J.J. Smith,
On the behavior of the cathodically polarized Pd/D system: Search
for emanating radiation. Phys. Lett. A, 1996. 210: p. 382.
140. Takahashi, A. Results of Experimental Studies of Excess
Heat vs Nuclear Products Correlation and Conceivable Reaction Model. in
The Seventh International Conference on Cold Fusion. 1998. Vancouver,
Canada: ENECO, Inc., Salt Lake City, UT.
141. Wang, D.L., et
al. Experimental Studies on the Anomalous Phenomenon in Pd Metal Loaded with
Deuterium. in Third International Conference on Cold Fusion, "Frontiers
of Cold Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo,
Japan.
142. Miles, M. and B.F. Bush. Radiation Measurements at China Lake:Real or Artifacts? in
The Seventh International Conference on Cold Fusion. 1998. Vancouver,
Canada: ENECO, Inc., Salt Lake City, UT.
143. Rout, R.K., et
al., Copious low energy emissions from palladium loaded with hydrogen or
deuterium. Indian J. Technol., 1991. 29: p. 571.
144. Savvatimova, I. and A.B. Karabut. Radioactivity of the
Cathode Samples after Glow Discharge. in 5th International Conference on
Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex,
France.
145. Dong, S.Y., et al., Precursors to 'cold
fusion' phenomenon and the detection of energetic charged particles in
deuterium/solid systems. Fusion Technol., 1991. 20: p. 330.
146. Jin, S., et al. Anomalous Nuclear Events in Deuterium
Palladium Systems. in Second Annual Conference on Cold Fusion, "The
Science of Cold Fusion". 1991. Como, Italy: Societa Italiana di Fisica,
Bologna, Italy.
147. Kamada, K., Electron impact H-H and
D-D fusions in molecules embedded in Al. 1. Experimental results. Jpn. J.
Appl. Phys. A, 1992. 31(9): p. L1287.
148. Li, X.Z.,
et al., Anomalous nuclear phenomena and solid state nuclear track
detector. Nucl. Tracks Radiat. Meas., 1993. 22: p. 599.
149. Lipson, A.G., et al. In-Situ Charged Particles And X-Ray Detection In Pd Thin
Film-Cathodes During Electrolysis In Li2SO4/H2O. in ICCF9, Ninth
International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua
University: unpublished.
150. Oriani, R.A. and J.C. Fisher,
Generation of Nuclear Tracks during Electrolysis. Jpn. J.
Appl. Phys. A, 2002. 41: p. 6180-6183.
151. Qiao,
G.S., et al. Nuclear Products in a Gas-Loading D/Pd and H/Pd System. in
The Seventh International Conference on Cold Fusion. 1998. Vancouver,
Canada.
152. Roussetski, A.S. Investigation of Nuclear
Emissions in the Process of D(H) Escaping from Deuterized (Hydrogenized)
PdO-Pd-PdO and PdO-Ag Samples. in Sixth International Conference on Cold
Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan:
New Energy and Industrial Technology Development Organization, Tokyo Institute
of Technology, Tokyo, Japan.
153. Rout, R.K., et al.,
Update on observation of low-energy emissions from deuterated and hydrated
palladium. Indian J. Technol., 1993. 31: p. 551.
154. Wang, K.L., et al. Search for Better Material for Cold
Fusion Experiment Using CR-39 Detector. in Second Annual Conference on
Cold Fusion, "The Science of Cold Fusion". 1991. Como, Italy: Societa
Italiana di Fisica, Bologna, Italy.
155. Wu, B., et al.,
The SEM observation of palladium-deuterium system after the gas discharge
process. Gaojishu Tongxun, 1991. 1(9): p. 1 (in Chinese).
156. Miley, G.H., et al. Quantitative observations of
transmutation products occuring in thin-film coated microspheres during
electrolysis. in Sixth International Conference on Cold Fusion, Progress
in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and
Industrial Technology Development Organization, Tokyo Institute of Technology,
Tokyo, Japan.
157. Miley, G.H., Possible Evidence of
Anomalous Energy Effects in H/D-Loaded Solids-Low Energy Nuclear Reactions
(LENRS). J. New Energy, 1997. 2(3/4): p. 6.
158.
Mizuno, T. Experimental Confirmation of the Nuclear Reaction at Low Energy
Caused by Electrolysis in the Electrolyte. in Proceedings for the
Symposium on Advanced Research in Energy Technology 2000. 2000. Hokkaido
University.
159. Mizuno, T., et al., Formation of 197Pt
radioisotopes in solid state electrolyte treated by high temperature
electrolysis in D2 gas. Infinite Energy, 1995. 1(4): p. 9.
160. Bush, R.T., A light water excess heat reaction suggests
that 'cold fusion' may be 'alkali-hydrogen fusion'. Fusion Technol., 1992.
22: p. 301.
161. Notoya, R. and M. Enyo. Excess
Heat Production in Electrolysis of Potassium Carbonate Solution with Nickel
Electrodes. in Third International Conference on Cold Fusion, "Frontiers
of Cold Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo,
Japan.
162. Bush, R.T. Evidence for an electrolytically
induced shift in the abundance ratio of Sr-88 and Sr-86. in International
Symposium on Cold Fusion and Advanced Energy Sources. 1994. Belarusian State
University, Minsk, Belarus: Fusion Information Center, Salt Lake City.
163. Notoya, R., Cold fusion arising from hydrogen evolution
reaction on active metals in alkali metallic ions' solutions. Environ. Res.
Forum, 1996. 1-2: p. 127.
164. Ohmori, T., T. Mizuno,
and M. Enyo, Isotopic distributions of heavy metal elements produced during
the light water electrolysis on gold electrodes. J. New Energy, 1996.
1(3): p. 90.
165. Singh, M., et al., Verification
of the George Oshawa Experiment for Anomalous Production of Iron From Carbon Arc
in Water. Fusion Technol., 1994. 26: p. 266.
166.
Jiang, X.L., L.J. Han, and W. Kang. Anomalous Element Production Induced by
Carbon Arcing Under Water. in The Seventh International Conference on
Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
167. Ransford, H.E., Non-Stellar nucleosynthesis: Transition
metal production by DC plasma-discharge electrolysis using carbon electrodes in
a non-metallic cell. Infinite Energy, 1999. 4(23): p. 16.
168. Ohmori, T. and M. Enyo, Iron Formation in Gold and
Palladium Cathodes. J. New Energy, 1996. 1(1): p. 15.
169. Ohmori, T., et al., Transmutation in the electrolysis of
lightwater - excess energy and iron production in a gold electrode. Fusion
Technol., 1997. 31: p. 210.
170. Bush, R.T. and R.D.
Eagleton. Evidence for Electrolytically Induced Transmutation and
Radioactivity Correlated with Excess Heat in Electrolytic Cells With Light Water
Rubidium Salt Electrolytes. in Fourth International Conference on Cold
Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview
Ave., Palo Alto, CA 94304.
171. Savvatimova, I. and A.
Karabut. Nuclear Reaction Products Registration on the Cathode after Glow
Discharge. in 5th International Conference on Cold Fusion. 1995.
Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
172. Passell, T.O. Charting the Way Forward in the EPRI Research
Program on Deuterated Metals. in 5th International Conference on Cold
Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex,
France.
173. Kervran, C.L., Biological Transmutations.
1972: Swan House Publishing Co.
174. Vysotskii, V.I., A.A.
Kornilova, and I.I. Samoyloylenko. Experimental discovery of phenomenon of
low-energy nuclear transformation of isotopes (Mn55=Fe57) in growing biological
cultures. in Sixth International Conference on Cold Fusion, Progress in
New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and
Industrial Technology Development Organization, Tokyo Institute of Technology,
Tokyo, Japan.
175. Vysotskii, V., et al., Observation and
mass-spectrometry. Study of controlled transmutation of intermediate mass
isotopes in growing biological cultures. Infinite Energy, 2001.
6(36): p. 64.
176. Anufriev, G.S. and B.S. Boltenkov,
Helium isotopes and hydrogen in aluminium and other metals. Vopr. At.
Nauki Tekh. Ser.: Fiz. Radiats. Povr. Radiats. Materialoved., 1991.
56(2): p. 73 (in Russian).
177. Wang, T., et al.
Study of the Deuterated Titanium Ti2Hx Samples by Using Nuclear Reaction
Analysis (NRA) and Materials Analysis Methods. in 8th International
Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical
Society, Bologna, Italy.
178. Lynch, J.F., J.D. Clewley, and
T.B. Flanagan, The Formation of Voids in Palladium Metal by the Introduction
and Removal of Interstital Hydrogen. Philos. Mag. A, 1973. 28: p.
1415.
178. Jiang, X.L., et al. Tip Effect and
Nuclear-Active Sites. in The Seventh International Conference on Cold
Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
180. Huggins, R.A. Fundamental Considerations Relating to the
Electrochemical Insertion of Hydrogen and Palladium into Mixed Conductors.
in 8th World Hydrogen Energy Conf. 1990. Honolulu, HI: Hawaii Natural
Energy Insitute, 2540 Dole St., Holmes Hall 246, Honolulu, HI 96822.
181. Jamieson, H.C., G.C. Weathrely, and F.D. Manchester, The
b-a Phase Transformation in Palladium-Hydrogen Alloys. J. Less-Common Met.,
1976. 56: p. 85.
182. Bockris, J., D. Hodko, and Z.
Minevski. Fugacity of hydrogen isotopes in metals: degradation, cracking and
cold fusion. in Symp. Hydrogen Storage Materials, Batteries,
Electrochemistry 1991. 1991.
183. De Ninno, A., A. La
Barbera, and V. Violant, Deformations induced by high loading ratios in
palladium-deuterium compounds. J. Alloys and Compounds, 1997.
253-254: p. 181.
184. Storms, E., A Study of Those
Properties of Palladium That Influence Excess Energy Production by the
"Pons-Fleischmann" Effect. Infinite Energy, 1996. 2(8): p. 50.
185. Lewis, F.A., The Palladium-Hydrogen System. Platinum
Met. Rev., 1982. 26: p. 121.
186. Flanagan, T.B. and
W.A. Oates, The Palladium-Hydrogen System. Annu. Rev. Mater. Sci., 1991.
21: p. 269.
187. Oriani, R.A. The
Physical and Metallurgical Aspects of Hydrogen in Metals. in Fourth
International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power
Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
188. Huggins, R.A. Materials Aspects of the Electrochemical
Insertion of Hydrogen and Deuterium into Mixed Conductors. in Fourth
International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power
Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
189. Santandrea, R.P. and R.G. Behrens, A review of the
thermodynamics and phase relationships in the palladium- hydrogen,
palladium-deuterium and palladium-tritium systems. High Temperature
Materials and Processes, 1986. 7: p. 149.
190.
Gillespie, L.J. and W.R. Downs, The Palladium-Deuterium Equilibrium. J.
Am. Chem. Soc., 1937. 61: p. 2494.
191. Anderson,
I.S., D.K. Ross, and C.J. Carlile, The Structure of the g Phase of Palladium
Deuteride. Phys. Lett. A, 1978. 68: p. 249.
192.
Herrero, C. and F.D. Manchester, Location of the Low Temperature Resistivity
Anomaly in Pd-D. Phys. Lett. A, 1981. 86: p. 29.
193. Wei, S.H. and A. Zunger, Instability of diatomic deuterium
in fcc palladium. J. Fusion Energy, 1990. 9(4): p. 367.
194. Celani, F., et al. The
Effect of g-b Phase on H(D)/Pd Overloading. in The Seventh
International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO,
Inc., Salt Lake City, UT.
195. Bennington, S.M., et al.,
In-situ measurements of deuterium uptake into a palladium electrode using
time-of-flight neutron diffractometry. J. Electroanal. Chem., 1990.
281: p. 323.
196. Dillon, C.T., B.J. Kennedy, and M.M.
Elcombe, The electrochemically formed palladium-deuterium system. II. In situ
neutron diffraction studies. Aust. J. Chem., 1993. 46: p. 681.
197. Worsham Jr., J.E., M.K. Wilkinson, and C.G. Shull,
Neutron-Diffraction Observations on the Palladium-hydrogen and
Palladium-deuterium systems. J. Phys. Chem. Solids, 1957. 3: p.
303.
198. Burger, J.P., et al., Electrical Resistivity of
Pd-Hx: Residual Resistivity. Solid State Commun., 1975. 17: p.
227.
199. Matsuzaki, A., T. Nishina, and I. Uchida, In
situ low incident angle XRD technique with electrochemical methods. Application
to deuterium charging into palladium cathode. Hyomen Gijutsu, 1994.
45: p. 106.
200. Asami, N., et al. Material Behavior of Highly Deuterated Palladium. in The
Ninth International Conference on Cold Fusion. 2002. Beijing, China:
Tsinghua University: unpublished.
201. Fukai, Y. and N.
Okuma, Formation of superabundant vacancies in Pd hydride under high hydrogen
pressures. Phys. Rev. Lett., 1994. 73: p. 1640.
202. Semiletov, S.A., et al., Electron-Diffraction Investigation
of Tetragonal PdH. Kristallografiya, 1980. 25: p. 665.
203. Baranova, R.V., et al., Crystal Structure of Pd Hydride
with Primitive Cubic Lattice. Sov. Phys. Crystallogr., 1980. 25: p.
736.
204. Bertalot, L., et al. Deuterium Charging in
Palladium by Electrolysis of Heavy Water: Measurement of Lattice Parameter.
in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui:
Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
205. Richards, P.M., Molecular-Dynamics Investigation of
Deuterium Separation in PdD1.1. Phys. Rev. B: Mater. Phys., 1989.
40(11): p. 7966.
206. Louis, E., et al.,
Calculation of hydrogen-hydrogen potential energies and fusion rates in
palladium hydride (PdxH2) clusters (x=2,4). Phys. Rev. B: Mater. Phys.,
1990. 42: p. 4996.
207. Ludecki, C.M., G. Deublein,
and R.A. Huggins, Thermodynamic Characterization of Metal Hydrogen Systems by
Assessment of Phase Diagrams and Electrochemical Measurements. Int. J.
Hydrogen Energy, 1987. 12: p. 81.
208. Picard, C.,
O.J. Kleppa, and G. Boureau, Thermodynamic Study of the Palladium-Hydrogen
System at 245-352 C and at Pressures Up To 34 atm. J. Chem. Phys., 1978.
69: p. 5549.
209. Sakamoto, Y., et al.,
Calorimetric enthalpies for palladium-hydrogen (deuterium) systems at H(D)
contents up to about [H]([D])/[Pd] = 0.86. J. Phys.: Condens. Mater., 1996.
8: p. 3229.
210. Flanagan, T.B., W. Luo, and J.D.
Clewley, Calorimetric enthalpies of absorption and desorption of protium and
deuterium by palladium. J. Less-Common Met., 1991. 172-174: p.
42.
211. Godshall, N.A., et al., Calorimetric and
thermodynamic analysis of palladium-deuterium electrochemical cells. J.
Fusion Energy, 1990. 9: p. 229.
212. Zhang, W.S., Z.F.
Zhang, and Z.L. Zhang, Some problems on the resistance method in the in situ
measurement of hydrogen content in palladium electrode. J. Electroanal.
Chem., 2002. 528: p. 1.
213. Barton, J.C. and F.A.
Lewis, Interface Impedance and the Apparent Electrical Resistance of
Palladium Hydrides in Aqueous Solutions. Trans. Faraday Soc., 1962.
58: p. 103.
214. Baranowski, B., High Pressure
Research on Palladium-Hydrogen Systems. Pt. Met. Rev., 1972. 16-17:
p. 10.
215. Lee, M. and R. Glosser, Resistivity of Thin
Films of the Palladium-Hydrogen System as a Function of Film Thickness.
Zeitschrift fur Physik. Chemie, 1986. 147: p. 27.
216.
Frazier, G.A. and R. Glosser, Charcterization of Thin Films of the Pd-H
System. J. Less-Common Met., 1980. 74: p. 89.
217.
Storms, E., How to produce the Pons-Fleischmann effect. Fusion Technol.,
1996. 29: p. 261.
218. Cravens, D. Factors Affecting Success Rate of Heat Generation in CF
Cells. in Fourth International Conference on Cold Fusion. 1993.
Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto,
CA 94304.
219. Szpak, S., P.A. Mosier-Boss, and J.J. Smith.
Reliable Procedure for the Initiation of the Fleischmann-Pons
Effect. in Second Annual Conference on Cold Fusion, "The Science of
Cold Fusion". 1991. Como, Italy: Societa Italiana di Fisica, Bologna,
Italy.
220. McKubre, M.C.H., et al. Concerning
Reproducibility of Excess Power Production. in 5th International
Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia
Antipolis Cedex, France.
221. Hasegewa, N., et al.
Observation of Excess Heat During Electrolysis of 1M LiOD in a Fuel Cell Type
Closed Cell. in Fourth International Conference on Cold Fusion. 1993.
Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto,
CA 94304.
222. Minato, J., et al. Materials/Surface
Aspects of Hydrogen/Deuterium Loading into Pd Cathode. in 5th
International Conference on Cold Fusion. 1995. Monte-Carlo, Monac: IMRA
Europe, Sophia Antipolis Cedex, France.
223. Kozima, H. and
K. Arai, Local coherence, condensation and nuclear reaction of neutrons at
crystal boundary of metal hydrides and deuterides. Int. J. Hydrogen Energy,
2000. 25(9): p. 845.
224. Fisher, J.C., Liquid-drop
model for extremely neutron rich nuclei. Fusion Technol., 1998. 34:
p. 66.
225. Oriani, R.A., Anomalous heavy atomic masses produced by electrolysis.
Fusion Technol., 1998. 34: p. 76.
226. Mills, R.L. and
W.R. Good, Fractional quantum energy levels of hydrogen. Fusion Technol.,
1995. 28: p. 1697.
227. Dufour, J.J., J.H. Foos, and
X.J.C. Dufour, Formation and properties of hydrex and deutex. Infinite
Energy, 1998. 4(20): p. 53.
228. Liu, F.S., The
phonon mechanism of the cold fusion. Mod. Phys. Lett. B, 1996. 10: p.
1129.
229. Violante, V. and A. De Ninno. Quantum
mechanical description of a lattice ion trap. in Sixth International
Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya,
Hokkaido, Japan: New Energy and Industrial Technology Development Organization,
Tokyo Institute of Technology, Tokyo, Japan.
230. Kucherov,
Y. Slow Nuclear Excitation Model. in Sixth International Conference on
Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido,
Japan: New Energy and Industrial Technology Development Organization, Tokyo
Institute of Technology, Tokyo, Japan.
231. Hagelstein, P.L.
A Unified Model for Anomalies in Metal Deuterides. in 8th
International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy:
Italian Physical Society, Bologna, Italy.
232. Chubb, S.R.
and T.A. Chubb. Theoretical Framework for Anomalous Heat and 4He in
Transition Metal Systems. in 8th International Conference on Cold
Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna,
Italy.
233. Bazhutov, Y.N. Erzion Discovery in Cosmic Rays
and its Possible Great Role in Nature in Framework of Erzion Model of Cold
Nuclear Transmutation. in 8th International Conference on Cold
Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna,
Italy.
234. Matsumoto, T., Mechanisms of cold fusion:
Comprehensive explanations by the Nattoh model. Mem. Fac. Eng. Hokkaido
Univ., 1995. 19(2): p. 201.
235. McKibben, J.L.,
The missed fractionally-charged particles. 1995.
236.
Rafelski, J., et al., Nuclear reactions catalyzed by a massive negatively
charged particle. How Cold Fusion Can Be Catalyzed. Fusion Technol., 1990.
18: p. 136.
237. Fisher, J.C., Polyneutrons as
agents for cold nuclear reactions. Fusion Technol., 1992. 22: p.
511.
238. Turner, L., Thoughts Unbottled by Cold
Fusion. Phys. Today, 1989. Sept.: p. 140.
239.
Feng, S., Enhancement of cold fusion rate by electron polarization in
palladium deuterium solid. Solid State Commun., 1989. 72: p.
205.
240. Hora, H., G.H. Miley, and J. Kelly. Low Energy
Nuclear Reactions of Protons in Host Metals. in 8th International
Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical
Society, Bologna, Italy.
241. Hora, H., et al.,
Proton-metal reactions in thin films with Boltzmann distribution similar to
nuclear astrophysics. Fusion Technol., 1999. 36: p. 331.
242. Hora, H., J.C. Kelly, and G.H. Miley, Energy gain and
nuclear transmutation by low-energy p- or d-reaction in metal lattices.
Infinite Energy, 1997. 2(12): p. 48.
243. Takahashi,
A., et al., Emission of 2.45 MeV and higher energy neutrons from D2O-Pd cell
under biased-pulse electrolysis. J. Nucl. Sci. Technol., 1990. 27: p.
663.
244. Isobe, Y., et al., Search for multibody nuclear
reactions in metal deuteride induced with ion beam and electrolysis methods.
Jpn. J. Appl. Phys. A, 2002. 41(part 1): p. 1546.
245.
Takahashi, A. Tetrahedral And Octahedral Resonance Fusion Under Transient
Condensation Of Deuterons At Lattice Focal Points. in ICCF9, Ninth
International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua
University: Unpublished.
246. Jones, J.E., et al.,
Faradaic efficiencies less than 100% during electrolysis of water can account
for reports of excess heat in 'cold fusion' cells. J. Phys. Chem., 1995.
99: p. 6973.
247. Miskelly, G.M., et al., Analysis
of the published calorimetric evidence for electrochemical fusion of deuterium
in palladium. Science, 1989. 246: p. 793.
248.
Fleischmann, M., et al., Calorimetry of the palladium-deuterium-heavy water
system. J. Electroanal. Chem., 1990. 287: p. 293.
249. Shanahan, K., A
Possible Calorimetric Error in Heavy Water Electrolysis on Platinum.
Thermochim. Acta, 2002. 387(2): p. 95-101.
250.
Nishimiya, N., et al., Hyperstoichiometric Hydrogen Occlusion by
Palladium Nanoparticles Included in NaY Zeolite. J. Alloys and Compounds,
2001. 319: p. 312.
251. Arata, Y. and Y.-C.
Zhang, Formation of condensed metallic deuterium lattice and nuclear
fusion. Proc. Japan. Acad., 2002. 78 ser. B: p. 57.
252. Tanzella, F.L., et al. Parameters affecting the
loading of hydrogen isotopes into palladium cathodes. in Sixth
International Conference on Cold Fusion, Progress in New Hydrogen Energy.
1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology
Development Organization, Tokyo Institute of Technology, Tokyo,
Japan.
253. Celani, F., et al. High
Hydrogen Loading into Thin Palladium Wires through Precipitate of Alkaline-Earth
Carbonate on the Surface of Cathode: Evidence of New Phases in the Pd-H
System and Unexpected Problems Due to Bacteria Contamination in the
Heavy-Water. in 8th International Conference on Cold Fusion. 2000.
Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.